agentconnect.prompts.agent_prompts module¶
Agent workflow definitions for the AgentConnect framework.
This module provides the core workflow definitions for different agent types, using LangGraph to create stateful, multi-step workflows. These workflows enable agents to make decisions, collaborate with other agents, and process complex tasks.
The module implements the ReAct (Reasoning + Acting) pattern using LangGraph’s StateGraph to create workflows with multiple nodes for preprocessing, execution, and postprocessing.
- class AgentMode(*values)¶
Bases:
Enum
Enum representing the operational modes of an agent.
- CUSTOM_RUNNABLE¶
Agent uses a custom runnable for processing
- SYSTEM_PROMPT¶
Agent uses a system prompt for processing
- CUSTOM_RUNNABLE = 'custom_runnable'¶
- SYSTEM_PROMPT = 'system_prompt'¶
- class WorkflowState(*values)¶
Bases:
Enum
Enum for workflow states.
- THINKING¶
Agent is thinking about the problem
- RESPONDING¶
Agent is generating a response
- TOOL_CALLING¶
Agent is calling a tool
- COLLABORATION¶
Agent is collaborating with another agent
- TASK_DECOMPOSITION¶
Agent is breaking down a task
- CAPABILITY_MATCHING¶
Agent is matching capabilities to tasks
- ERROR¶
An error occurred in the workflow
- COMPLETE¶
Workflow is complete
- THINKING = 'thinking'¶
- RESPONDING = 'responding'¶
- TOOL_CALLING = 'tool_calling'¶
- COLLABORATION = 'collaboration'¶
- TASK_DECOMPOSITION = 'task_decomposition'¶
- CAPABILITY_MATCHING = 'capability_matching'¶
- ERROR = 'error'¶
- COMPLETE = 'complete'¶
- class AgentState¶
Bases:
TypedDict
Base state for agent workflows.
This TypedDict defines the structure of the state object used in agent workflows. It includes fields for messages, sender/receiver information, capabilities, and various tracking fields.
- messages¶
Sequence of messages in the conversation
- sender¶
ID of the message sender
- receiver¶
ID of the message receiver
- mode¶
Optional mode of operation
- capabilities¶
Optional list of agent capabilities
- runnable_result¶
Optional result from a runnable
- collaboration_results¶
Optional results from collaboration
- agents_found¶
Optional list of agents found
- retry_count¶
Optional count of retries
- error¶
Optional error message
- context_reset¶
Optional flag for context reset
- topic_changed¶
Optional flag for topic change
- last_interaction_time¶
Optional timestamp of last interaction
- class CollaborationState¶
Bases:
AgentState
State for collaboration workflows.
This TypedDict extends AgentState with additional fields specific to collaboration workflows.
- found_agents¶
List of agent IDs found for collaboration
- capabilities¶
List of agent capabilities
- collaboration_result¶
Optional result from collaboration
- subtasks¶
List of subtasks
- current_subtask¶
Optional current subtask
- completed_subtasks¶
List of completed subtasks
- task_description¶
Optional task description
- action¶
Optional action to take
- error¶
Optional error message
- class DecisionOutput(**data)¶
Bases:
BaseModel
Output schema for decision nodes.
- action¶
The action to take next
- reason¶
The reason for the decision
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class TaskDecompositionOutput(**data)¶
Bases:
BaseModel
Output schema for task decomposition.
- subtasks¶
List of subtasks
- model_config: ClassVar[ConfigDict] = {}¶
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class AgentWorkflow(agent_id, llm, tools, prompt_templates, custom_tools=None)¶
Bases:
object
Base class for agent workflows.
This class provides the foundation for creating agent workflows using LangGraph. It handles the creation of the workflow graph, tools, and prompt templates.
- Parameters:
agent_id (str)
llm (BaseChatModel)
tools (PromptTools)
prompt_templates (PromptTemplates)
custom_tools (List[BaseTool] | None)
- agent_id¶
Unique identifier for the agent
- llm¶
Language model to use
- tools¶
Tools available to the agent
- prompt_templates¶
Prompt templates for the agent
- custom_tools¶
Optional list of custom LangChain tools
- workflow¶
The workflow graph
- mode¶
The agent’s operational mode
- build_workflow()¶
Build the workflow graph for the agent.
- Return type:
StateGraph
- Returns:
A StateGraph instance representing the agent’s workflow.
- compile()¶
Compile the workflow with memory persistence.
- Returns:
The compiled workflow with memory persistence
- class AIAgentWorkflow(agent_id, system_prompt_config, llm, tools, prompt_templates, custom_tools=None)¶
Bases:
AgentWorkflow
Workflow for AI agents with enhanced capabilities.
This workflow extends the base AgentWorkflow with AI-specific capabilities and system prompt configuration.
- Parameters:
agent_id (str)
system_prompt_config (SystemPromptConfig)
llm (BaseChatModel)
tools (PromptTools)
prompt_templates (PromptTemplates)
custom_tools (List[BaseTool] | None)
- system_prompt_config¶
Configuration for the system prompt
- class TaskDecompositionWorkflow(agent_id, system_prompt_config, llm, tools, prompt_templates, custom_tools=None)¶
Bases:
AgentWorkflow
Workflow for decomposing tasks into subtasks.
This workflow extends the base AgentWorkflow with task decomposition capabilities and system prompt configuration.
- Parameters:
agent_id (str)
system_prompt_config (SystemPromptConfig)
llm (BaseChatModel)
tools (PromptTools)
prompt_templates (PromptTemplates)
custom_tools (List[BaseTool] | None)
- system_prompt_config¶
Configuration for the system prompt
- class CollaborationRequestWorkflow(agent_id, system_prompt_config, llm, tools, prompt_templates, custom_tools=None)¶
Bases:
AgentWorkflow
Workflow for handling collaboration requests.
This workflow extends the base AgentWorkflow with collaboration capabilities and system prompt configuration.
- Parameters:
agent_id (str)
system_prompt_config (SystemPromptConfig)
llm (BaseChatModel)
tools (PromptTools)
prompt_templates (PromptTemplates)
custom_tools (List[BaseTool] | None)
- system_prompt_config¶
Configuration for the system prompt
- create_workflow_for_agent(agent_type, system_config, llm, tools, prompt_templates, agent_id=None, custom_tools=None)¶
Factory function to create workflows based on agent type.
- Parameters:
agent_type (
str
) – Type of agent workflow to createsystem_config (
SystemPromptConfig
) – System prompt configurationllm (
BaseChatModel
) – Language model to usetools (
PromptTools
) – Tools available to the agentprompt_templates (
PromptTemplates
) – Prompt templates for the agentagent_id (
Optional
[str
]) – Optional agent ID for tool contextcustom_tools (
Optional
[List
[BaseTool
]]) – Optional list of custom LangChain tools
- Return type:
- Returns:
An AgentWorkflow instance
- Raises:
ValueError – If the agent type is unknown