agentconnect.prompts.chain_factory module¶
Chain factory for creating LangGraph workflows.
This module provides factory functions for creating LangGraph workflows with different configurations and capabilities. It simplifies the process of creating complex agent workflows by providing pre-configured templates.
Note: The ChainFactory class is deprecated. Use the workflow functions instead.
- class State¶
Bases:
TypedDict
State type for basic conversation workflows.
- messages¶
Sequence of messages in the conversation
- class ChainFactory¶
Bases:
object
Factory for creating conversation chains.
Deprecated: Use the workflow functions instead.
- static create_conversation_chain(provider_type, model_name, api_key, system_config)¶
Create a conversation chain with the specified configuration.
- Parameters:
provider_type (
ModelProvider
) – Type of model provider to usemodel_name (
ModelName
) – Name of the model to useapi_key (
str
) – API key for the providersystem_config (
SystemPromptConfig
) – Configuration for the system prompt
- Return type:
- Returns:
A compiled Runnable representing the conversation chain
- create_agent_workflow(agent_type, system_config, llm, agent_registry=None, tools=None, prompt_templates=None, agent_id=None, custom_tools=None)¶
Create a workflow for an agent.
- Parameters:
agent_type (
str
) – Type of agent workflow to createsystem_config (
SystemPromptConfig
) – Configuration for the system promptllm (
BaseChatModel
) – Language model to use for the agentagent_registry (
Optional
[AgentRegistry
]) – Registry of agents for collaborationtools (
Optional
[List
[BaseTool
]]) – Tools for the agent to useprompt_templates (
Optional
[PromptTemplates
]) – Templates for promptscustom_tools (
Optional
[List
[BaseTool
]]) – Custom tools for the agent
- Return type:
- Returns:
An agent workflow that can be compiled and run
- create_collaboration_workflow(llm, agent_registry, system_prompt, memory_key='chat_history', max_iterations=10)¶
Create a collaboration workflow for agent-to-agent interaction.
- Parameters:
llm (
BaseChatModel
) – Language model to use for the workflowagent_registry (
AgentRegistry
) – Registry of agents for collaborationsystem_prompt (
str
) – System prompt for the workflowmemory_key (
str
) – Key to use for storing chat historymax_iterations (
int
) – Maximum number of iterations for the workflow
- Return type:
StateGraph
- Returns:
A StateGraph representing the collaboration workflow
- create_custom_workflow(llm, nodes, edges, state_type, entry_point, tools=None)¶
Create a custom workflow with the specified nodes and edges.
- Parameters:
llm (
BaseChatModel
) – Language model to use for the workflownodes (
Dict
[str
,Callable
]) – Dictionary mapping node names to node functionsedges (
Dict
[str
,Dict
[str
,str
]]) – Dictionary mapping source nodes to dictionaries of condition-target pairsstate_type (
Any
) – Type of state to use for the workflowentry_point (
str
) – Name of the entry point nodetools (
Optional
[List
[BaseTool
]]) – Optional list of tools for the workflow
- Return type:
StateGraph
- Returns:
A StateGraph representing the custom workflow
- Raises:
ValueError – If the entry point is not in the nodes dictionary
- compile_workflow(workflow, config=None)¶
Compile a workflow into a runnable.
- create_runnable_from_workflow(workflow, config=None)¶
Create a runnable from a workflow with the specified configuration.
- Parameters:
workflow (
StateGraph
) – StateGraph to create a runnable fromconfig (
Optional
[RunnableConfig
]) – Optional configuration for the runnable
- Return type:
- Returns:
A Runnable that can be used to execute the workflow