Custom Providers Guide

Creating Custom AI Providers

This guide explains how to create and use custom AI providers with AgentConnect.

Understanding Providers in AgentConnect

In AgentConnect, providers are responsible for interfacing with AI services. The framework includes built-in providers for popular services like OpenAI, Anthropic, Google, and Groq, but you can also create custom providers for other services or your own AI models.

Provider Architecture

Providers in AgentConnect follow a common interface:

  1. They extend the BaseProvider class

  2. They implement methods for generating responses

  3. They handle authentication and API communication

  4. They convert between AgentConnect’s message format and the provider’s format

Creating a Custom Provider

To create a custom provider, you need to:

  1. Create a new class that extends BaseProvider

  2. Implement the required methods

  3. Handle authentication and API communication

  4. Register the provider with the provider factory

Here’s an example:

from abc import ABC, abstractmethod
from typing import List, Dict, Optional, Any
from langchain.chat_models import init_chat_model
from langchain_core.language_models.chat_models import BaseChatModel
from langchain.schema import HumanMessage, AIMessage, SystemMessage
from agentconnect.core.types import ModelName

class MyCustomProvider(ABC):
    """Custom provider for a hypothetical AI API service."""

    def __init__(self, api_key: Optional[str] = None):
        self.api_key = api_key
        self.provider_name = "MyCustomAI"
        self.api_url = "https://api.mycustomai.com/generate"

    def _format_messages(self, messages: List[Dict[str, str]]) -> List[Any]:
        """Convert dict messages to LangChain message objects"""
        formatted_messages = []
        for msg in messages:
            if msg["role"] == "system":
                formatted_messages.append(SystemMessage(content=msg["content"]))
            elif msg["role"] == "user":
                formatted_messages.append(HumanMessage(content=msg["content"]))
            elif msg["role"] == "assistant":
                formatted_messages.append(AIMessage(content=msg["content"]))
        return formatted_messages

    async def generate_response(
        self, messages: List[Dict[str, str]], model: ModelName, **kwargs
    ) -> str:
        try:
            llm = self.get_langchain_llm(model, **kwargs)
            formatted_messages = self._format_messages(messages)

            # Ensure callbacks are passed through
            callbacks = kwargs.get("callbacks", None)

            response = await llm.ainvoke(formatted_messages, callbacks=callbacks)
            return response.content
        except Exception as e:
            return f"Provider Error: {str(e)}"

    def get_available_models(self) -> List[ModelName]:
        """Return list of available models for this provider"""
        return [
            ModelName.GPT4O,  # Example - replace with actual models
            ModelName.GPT4O_MINI
        ]

    def get_langchain_llm(self, model_name: ModelName, **kwargs) -> BaseChatModel:
        """Returns a LangChain chat model instance using init_chat_model"""
        config = {"model": model_name.value, **self._get_provider_config(), **kwargs}
        return init_chat_model(**config)

    def _get_provider_config(self) -> Dict[str, Any]:
        """Returns provider-specific configuration"""
        return {
            "api_key": self.api_key,
            "provider": "mycustom",
            "endpoint": self.api_url
        }

Extending the Provider Factory

To make your custom provider available through the provider factory:

from agentconnect.providers.provider_factory import ProviderFactory
from agentconnect.core.types import ModelProvider
from enum import Enum

# Extend the ModelProvider enum
class CustomModelProvider(str, Enum):
    MYCUSTOM = "mycustom"

# Register your custom provider with the factory
ProviderFactory._providers[CustomModelProvider.MYCUSTOM] = MyCustomProvider

Using Your Custom Provider

Once you’ve created and registered your custom provider, you can use it with agents:

from agentconnect.agents import AIAgent
from agentconnect.core.types import AgentIdentity, InteractionMode

# Create an agent with your custom provider
agent = AIAgent(
    agent_id="custom-agent-1",
    name="CustomAgent",
    provider_type=CustomModelProvider.MYCUSTOM,  # Your custom provider type
    model_name=ModelName.GPT4O,  # Or your custom model
    api_key="your-api-key",
    identity=AgentIdentity.create_key_based(),
    interaction_modes=[
        InteractionMode.HUMAN_TO_AGENT,
        InteractionMode.AGENT_TO_AGENT
    ]
)

Advanced Provider Features

You can implement advanced features in your custom provider:

  1. Streaming Responses: Implement streaming for real-time responses

  2. Model-Specific Parameters: Add support for model-specific parameters

  3. Rate Limiting: Implement rate limiting to avoid API throttling

  4. Caching: Add response caching to improve performance

  5. Fallback Mechanisms: Implement fallback mechanisms for reliability

Here’s an example with streaming support:

async def generate_streaming_response(
    self, messages: List[Dict[str, str]], model: ModelName, **kwargs
) -> AsyncGenerator[str, None]:
    """Generate a streaming response."""
    try:
        llm = self.get_langchain_llm(model, **kwargs)
        formatted_messages = self._format_messages(messages)

        # Configure for streaming
        async for chunk in llm.astream(formatted_messages):
            yield chunk.content
    except Exception as e:
        yield f"Provider Error: {str(e)}"

Best Practices

When creating custom providers, follow these best practices:

  1. Error Handling: Implement robust error handling for API failures

  2. Logging: Add detailed logging for debugging

  3. Configuration: Make the provider configurable for different environments

  4. Testing: Create tests for your provider

  5. Documentation: Document your provider’s capabilities and usage

  6. Security: Handle API keys securely

  7. Performance: Optimize for performance, especially for high-traffic applications