Multi-Agent Setup Guide¶
Setting Up Multiple Agents¶
This guide explains how to set up and manage multiple agents in AgentConnect.
Prerequisites¶
Before setting up multiple agents, ensure you have:
Installed AgentConnect
API keys for the AI providers you plan to use
Basic understanding of the AgentConnect architecture
Creating Multiple Agents¶
To create multiple agents, you’ll need to:
Create agent identities
Initialize agents with different configurations
Register them with a communication hub
Here’s an example:
import asyncio
from agentconnect.agents import AIAgent
from agentconnect.core.types import ModelProvider, ModelName, AgentIdentity, InteractionMode
from agentconnect.core.registry import AgentRegistry
from agentconnect.communication import CommunicationHub
async def setup_agents():
# Create an agent registry and communication hub
registry = AgentRegistry()
hub = CommunicationHub(registry)
# Create identities for your agents
assistant_identity = AgentIdentity.create_key_based()
researcher_identity = AgentIdentity.create_key_based()
coder_identity = AgentIdentity.create_key_based()
# Create an assistant agent
assistant_agent = AIAgent(
agent_id="assistant-1",
name="Assistant",
provider_type=ModelProvider.OPENAI,
model_name=ModelName.GPT4O,
api_key="your-openai-api-key",
identity=assistant_identity,
interaction_modes=[
InteractionMode.HUMAN_TO_AGENT,
InteractionMode.AGENT_TO_AGENT
]
)
# Create a researcher agent
researcher_agent = AIAgent(
agent_id="researcher-1",
name="Researcher",
provider_type=ModelProvider.ANTHROPIC,
model_name=ModelName.CLAUDE_3_7_SONNET,
api_key="your-anthropic-api-key",
identity=researcher_identity,
interaction_modes=[
InteractionMode.AGENT_TO_AGENT
]
)
# Create a coder agent
coder_agent = AIAgent(
agent_id="coder-1",
name="Coder",
provider_type=ModelProvider.OPENAI,
model_name=ModelName.GPT4O,
api_key="your-openai-api-key",
identity=coder_identity,
interaction_modes=[
InteractionMode.AGENT_TO_AGENT
]
)
# Register the agents with the hub
await hub.register_agent(assistant_agent)
await hub.register_agent(researcher_agent)
await hub.register_agent(coder_agent)
return hub, [assistant_agent, researcher_agent, coder_agent]
Configuring Agent Communication¶
Once you have multiple agents, you need to configure how they communicate:
from agentconnect.core.message import Message
from agentconnect.core.types import MessageType
async def setup_communication(hub, agents):
assistant, researcher, coder = agents
# Set up message handlers
async def assistant_handler(message):
print(f"Assistant received: {message.content[:50]}...")
# Process the message and potentially respond
async def researcher_handler(message):
print(f"Researcher received: {message.content[:50]}...")
# Process the message and potentially respond
async def coder_handler(message):
print(f"Coder received: {message.content[:50]}...")
# Process the message and potentially respond
# Register the handlers with the hub
hub.register_message_handler(assistant.agent_id, assistant_handler)
hub.register_message_handler(researcher.agent_id, researcher_handler)
hub.register_message_handler(coder.agent_id, coder_handler)
Orchestrating Multi-Agent Workflows¶
To orchestrate workflows involving multiple agents:
async def run_workflow(hub, agents):
assistant, researcher, coder = agents
# User sends a request to the assistant
user_identity = AgentIdentity.create_key_based()
user_message = Message.create(
sender_id="user-1",
receiver_id=assistant.agent_id,
content="I need to build a Python application that analyzes stock market data.",
sender_identity=user_identity,
message_type=MessageType.TEXT
)
# Assistant routes the request to the researcher for information gathering
await hub.route_message(user_message)
# In a real implementation, the assistant would process the message and then
# decide to send a message to the researcher
research_request = Message.create(
sender_id=assistant.agent_id,
receiver_id=researcher.agent_id,
content="Find information about Python libraries for stock market analysis.",
sender_identity=assistant.identity,
message_type=MessageType.TEXT
)
await hub.route_message(research_request)
# The researcher would process and respond, then the assistant might
# send a request to the coder
coding_request = Message.create(
sender_id=assistant.agent_id,
receiver_id=coder.agent_id,
content="Create a Python script that uses pandas and yfinance to analyze stock data.",
sender_identity=assistant.identity,
message_type=MessageType.TEXT
)
await hub.route_message(coding_request)
# In a real implementation, you would have proper message handling and
# response processing
Complete Example¶
Here’s a complete example that sets up multiple agents and runs a simple workflow:
import asyncio
import logging
from agentconnect.agents import AIAgent
from agentconnect.core.types import ModelProvider, ModelName, AgentIdentity, MessageType, InteractionMode
from agentconnect.core.message import Message
from agentconnect.core.registry import AgentRegistry
from agentconnect.communication import CommunicationHub
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
async def main():
# Create an agent registry and communication hub
registry = AgentRegistry()
hub = CommunicationHub(registry)
# Create identities for your agents
assistant_identity = AgentIdentity.create_key_based()
researcher_identity = AgentIdentity.create_key_based()
user_identity = AgentIdentity.create_key_based()
# Create an assistant agent
assistant_agent = AIAgent(
agent_id="assistant-1",
name="Assistant",
provider_type=ModelProvider.OPENAI,
model_name=ModelName.GPT4O,
api_key="your-openai-api-key",
identity=assistant_identity
)
# Create a researcher agent
researcher_agent = AIAgent(
agent_id="researcher-1",
name="Researcher",
provider_type=ModelProvider.ANTHROPIC,
model_name=ModelName.CLAUDE_3_7_SONNET,
api_key="your-anthropic-api-key",
identity=researcher_identity
)
# Register the agents with the hub
await hub.register_agent(assistant_agent)
await hub.register_agent(researcher_agent)
# Set up message handlers
async def assistant_handler(message):
logger.info(f"Assistant received: {message.content[:50]}...")
if message.sender_id == "user-1":
# Forward to researcher for more information
research_request = Message.create(
sender_id=assistant_agent.agent_id,
receiver_id=researcher_agent.agent_id,
content=f"Research this topic: {message.content}",
sender_identity=assistant_agent.identity,
message_type=MessageType.TEXT
)
await hub.route_message(research_request)
elif message.sender_id == researcher_agent.agent_id:
# Process research results and respond to user
user_response = Message.create(
sender_id=assistant_agent.agent_id,
receiver_id="user-1",
content=f"Based on research, here's what I found: {message.content}",
sender_identity=assistant_agent.identity,
message_type=MessageType.RESPONSE
)
await hub.route_message(user_response)
async def researcher_handler(message):
logger.info(f"Researcher received: {message.content[:50]}...")
# Simulate research process
research_result = f"Research results for: {message.content}"
# Send results back to assistant
response = Message.create(
sender_id=researcher_agent.agent_id,
receiver_id=message.sender_id,
content=research_result,
sender_identity=researcher_agent.identity,
message_type=MessageType.RESPONSE
)
await hub.route_message(response)
async def user_handler(message):
logger.info(f"User received: {message.content[:50]}...")
# In a real application, you would display this to the user
# Register the handlers with the hub
hub.register_message_handler(assistant_agent.agent_id, assistant_handler)
hub.register_message_handler(researcher_agent.agent_id, researcher_handler)
hub.register_message_handler("user-1", user_handler)
# Start the workflow with a user message
user_message = Message.create(
sender_id="user-1",
receiver_id=assistant_agent.agent_id,
content="Tell me about quantum computing applications.",
sender_identity=user_identity,
message_type=MessageType.TEXT
)
# Send the message through the hub
logger.info(f"User sending message: {user_message.content}")
await hub.route_message(user_message)
# In a real application, you would have a proper event loop
# For this example, we'll just wait a short time for the workflow to complete
await asyncio.sleep(5)
logger.info("Multi-agent workflow completed")
# Run the async function
if __name__ == "__main__":
asyncio.run(main())